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Need for developing new tools 
for combating malaria
Malaria is caused by five Plasmodium par-
asite species, of which Plasmodium falci-
parum inflicts the greatest disease burden, 
causing approximately 200 million cases of 
malaria and 500,000 deaths each year (1). 
P. falciparum infection begins when mos-
quitos inject sporozoites into the skin and 
blood. Sporozoites rapidly migrate to the 
liver, where they replicate asexually before 
reentering the bloodstream and invading 
erythrocytes, causing fever and other malar-
ia symptoms. A small percentage of blood-
stage parasites differentiate into nonpatho-
genic, sexual forms called gametocytes that 
are taken up by the mosquito during a blood 
meal to complete the life cycle (Figure 1A).

Encouragingly, there has been an 
unprecedented reduction in malaria cases 
and deaths since the turn of the century 
that coincided with the scale-up of malaria 
control efforts, particularly in sub-Saharan 
Africa (2). However, the WHO recently 
reported that progress against malaria may 
have stalled and even reversed in some 
regions (1). This sobering news emphasiz-
es the need to not only expand the use of 

existing tools to fight malaria — namely, 
antimalarial drugs, mosquito bed nets, and 
insecticides — but also to develop new tools 
to further reduce malaria transmission and 
contribute to its eventual eradication (3). A 
key component of this strategy is the devel-
opment of vaccines and drugs that have the 
ability to reduce or block malaria transmis-
sion from humans back to the mosquito 
vector (4). However, the development of 
such tools has been impeded, in part, by a 
lack of practical and reproducible in vivo 
models for the early evaluation of candi-
date transmission-blocking interventions. 
In this issue of the JCI, Katharine Collins 
and colleagues report the safe and repro-
ducible induction of P. falciparum gameto-
cytes during controlled human malaria 
infection (CHMI) and demonstrate their 
transmissibility to mosquitoes (5), there-
by moving the field toward a physiologi-
cally relevant model that could accelerate 
the evaluation and prioritization of novel 
transmission-blocking interventions.

The CHMI model
Since the early 1900s, humans have been 
deliberately infected with Plasmodium 

parasites for both therapeutic and research 
purposes. This colorful history began with 
the intentional infection of neurosyphilis 
patients with Plasmodium vivax to induce 
high fevers that were thought to kill trepo-
nemal spirochetes in the central nervous 
system (6). By the 1940s, scientists were 
infecting humans with Plasmodium to test 
antimalarial drugs, and by the 1970s, to 
investigate the efficacy of malaria immu-
nization (7). In recent years, CHMI has 
become a common research tool for eval-
uating candidate drugs and vaccines that 
target the liver and asexual blood stag-
es (8), and it is now performed at many 
centers around the world, including sites 
in malaria-endemic regions of Africa (9, 
10). CHMI can be initiated by the bites 
of Plasmodium-infected mosquitos, by 
injecting sporozoites dissected from mos-
quito salivary glands (11), or by sidestep-
ping the liver altogether and inoculating 
infected erythrocytes intravenously (12). 
Regardless of how CHMI is initiated, it is 
terminated with a curative course of anti-
malarial drugs once asexual parasites are 
detected in blood. At this stage, mature P. 
falciparum gametocytes are not typically 
detectable, since their appearance in circu-
lation lags behind that of asexual parasites 
by approximately 10 days, thus preclud-
ing any rigorous study of gametocytes or 
transmission-blocking interventions with 
standard CHMI models.

Efficacy of the CHMI model  
of gametocyte transmission
With the goal of developing a CHMI mod-
el of gametocyte transmission, Collins and 
colleagues modified their CHMI protocol 
by using piperaquine monotherapy (5), 
taking advantage of the drug’s selective 
activity against asexual blood-stage para-
sites (Figure 1B and ref. 13). In this study, 
P. falciparum–infected erythrocytes were 
administered intravenously to 17 malaria- 
naive adults, and seven to eight days later, 
a single oral dose of piperaquine cleared 

     Related Article: p. 1551

Conflict of interest: The authors have declared that no conflict of interest exists.
Reference information: J Clin Invest. 2018;128(4):1264–1266. https://doi.org/10.1172/JCI120260.

Malaria, caused by mosquito-transmitted Plasmodium parasites, continues 
to take a major toll on global health. The development of drugs and vaccines 
that reduce malaria transmission from humans back to mosquitos could 
contribute to the control and eventual eradication of malaria, but research 
models for the early clinical evaluation of candidate interventions are 
lacking. In this issue of the JCI, Collins and colleagues report the successful 
transmission of Plasmodium falciparum parasites from humans to 
mosquitoes during controlled human malaria infection, thus providing a 
potential tool to accelerate the development of much needed transmission-
blocking drugs and vaccines.

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/4
https://doi.org/10.1172/JCI120260


The Journal of Clinical Investigation      C O M M E N T A R Y

1 2 6 5jci.org      Volume 128      Number 4      April 2018

lished biomarker that predicts transmissi-
bility of gametocytes to mosquitoes (17), 
direct skin-feeding or membrane-feeding 
experiments are necessary to accurately 
estimate transmission-blocking activity, 
unless an intervention completely clears 
gametocytes from circulation. However, as 
the authors note, mosquito infection rates 
were too low in their model to evaluate the 
transmission-blocking activity of the drugs 
tested. By concentrating gametocytes in the 
membrane-feeding assay, higher infection 
rates were achieved, and in a pilot experi-
ment, transmission occurred in two of two 
subjects before primaquine treatment and 
zero of two subjects after treatment, indi-
cating that higher gametocytemia would 
improve the model’s ability to accurately 
estimate transmission-blocking activity of 
candidate drugs and vaccines. It remains 
unclear how high gametocyte levels must 
be to feasibly evaluate transmission-block-
ing interventions with CHMI. Field studies 

rates have been observed from naturally 
infected individuals in endemic areas with 
similar levels of gametocytemia (14).

The authors explored the model’s abil-
ity to test gametocytocidal drug activity in 
vivo. Primaquine, a known gametocytocid-
al drug, reduced gametocytemia by 90%, 
compared with a 21% reduction with the 
investigational antimalarial artefenomel 
(15), similar to what was seen in those 
who received no drug. This highlights the 
model’s potential to fill a critical gap in the 
gametocytocidal drug pipeline — to assess 
in vivo the safety, dosing, and efficacy of 
candidate compounds identified through 
in vitro screens of chemical libraries (16). 
Although a positive association between 
gametocytemia and mosquito infection 
was observed in the model, the relation-
ship between these parameters is influ-
enced by many factors, including the stage 
of gametocyte maturation and ratio of male 
and female gametocytes. Without an estab-

asexual parasites from five subjects, while 
the remaining subjects required a second 
higher dose of piperaquine. As early as 10 
days after inoculation, male and female 
gametocytes began appearing in the circu-
lation of all subjects and remained at stable 
levels for up to 21 days, when a gametocy-
tocidal drug was administered to end the 
study. At several time points between the 
appearance of gametocytes and the end of 
the study, 11 subjects were evaluated for 
transmissibility, eight of which success-
fully infected mosquitoes, either by direct 
skin feeding or with membrane-feeding 
assays in which gametocyte-infected blood 
was fed to mosquitoes through an artificial 
membrane. However, the efficiency of 
mosquito infection was low, with a medi-
an of 7% of mosquitos becoming infected 
after direct skin feeding and even fewer 
after membrane feeding. This low trans-
mission efficiency was not entirely unex-
pected, as comparable mosquito infection 

Figure 1. P. falciparum malaria: the life cycle of natural infection and a new model of human-to-mosquito transmission.  (A) Natural P. falciparum infec-
tion begins in humans when Anopheles mosquitos inject sporozoites into the skin and blood. Sporozoites migrate to the liver and invade hepatocytes, 
where they differentiate into merozoites and replicate asexually without causing symptoms. After seven to ten days, merozoites exit the liver into the 
bloodstream and begin a 48-hour cycle of asexual replication within erythrocytes. Asexual blood-stage parasites cause disease by triggering inflamma-
tion and sequestering in blood vessels of vital organs. A small percentage of blood-stage parasites differentiate into male and female gametocytes — the 
nonpathogenic sexual forms taken up by mosquitos during blood meals. In the mosquito, gametes fuse and ultimately form sporozoites that migrate to 
the mosquito salivary gland to complete the life cycle. (B) In this issue, Collins and colleagues describe a new model of malaria transmission from humans 
to mosquitoes using CHMI. P. falciparum–infected erythrocytes were inoculated intravenously into malaria-naive adults, bypassing the liver and directly 
establishing a blood-stage infection. The drug piperaquine, which is selectively active against asexual blood-stage parasites, was administered orally sev-
en to eight days later to attenuate the replication of pathogenic asexual parasites while allowing nonpathogenic gametocytes to develop and mature. The 
transmissibility of gametocytes from humans to mosquitos was assessed either directly by feeding laboratory-reared mosquitoes on the skin of infected 
subjects or indirectly with assays in which infected blood is fed to mosquitoes through an artificial membrane. All subjects received a curative course of 
antimalarial drugs at the end of the study.
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bility? It will also be of interest to further 
investigate in vivo differences between 
male and female gametocytes, such as 
their relative kinetics and susceptibility to 
transmission-blocking interventions (23). 
Despite its current limitations and import-
ant unanswered questions, this innovative 
model promises to continue to deepen our 
understanding of gametocyte biology and 
transmission, thereby accelerating the 
development of novel and urgently needed 
transmission-blocking interventions.
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Future directions
As with any model, there is a delicate bal-
ance between controlling variables and 
attempting to stay true to the “real world.” 
In this vein, there are many questions to 
address going forward. For example, does 
the gametocyte biology of the laboratory- 
adapted P. falciparum line used in this mod-
el differ from that of parasites circulating in 
nature? Although piperaquine is not frankly 
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