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Introduction
Mechanical forces guide the development and physiology of every 
organ system, but they are particularly crucial in the cardiovas-
cular system, whose main function of transporting pressurized 
blood to every tissue in the body is essentially mechanical. Blood 
pumped from the heart exerts two main forces on the vasculature: 
the frictional force from blood flow (fluid shear stress [FSS]) that 
is parallel to the vessel wall, and the force from blood pressure 
that stretches the vessel wall. These forces are sensed and inter-
preted by the cells of the vessel wall to guide development during 
embryogenesis and remodeling during postnatal and adult life 
to optimize blood flow to the tissues and to ensure the mechani-
cal integrity of the vessel walls. However, when either the forces 
themselves or the mechanisms by which forces are sensed are 
pathological, mechanotransduction contributes to the major dis-
eases of the vasculature.

This review briefly discusses basic pathways of FSS mecha-
notransduction, then how these pathways govern physiological 
remodeling, and last, how these same mechanisms contribute to 
disease. Our overarching view is that pathways evolved for devel-
opmental and physiological regulation are subverted or altered in 
disease. The emphasis of this Review is on how recent advances in 
the understanding of mechanotransduction will elucidate patho-
logical processes and might offer new paths to therapies.

Basic mechanisms of FSS signaling
The ability of the vascular system to perfuse all tissues in the 
body requires precise control of blood flow through each vas-
cular bed. Endothelial sensing of FSS governs both short-term 
vascular tone and long-term vascular remodeling to adjust ves-
sel diameters to tissue demand. Endothelial cells (ECs) have 

evolved sophisticated mechanosensing abilities to detect dis-
tinct features of flow profiles and regulate vessel physiology and 
remodeling accordingly (1). These features include flow magni-
tude, direction, and the amplitude and frequency of pulsatile flow 
(2–6). In humans, normal physiological flow is between roughly 
1 and 5 pascals (Pa) and is highly pulsatile in arteries; of similar 
magnitude but less pulsatile in capillaries; and about 10-fold less 
with minimal pulsatility in veins (7). These forces are very low 
compared to typical traction stresses (~5 kPa; ref. 8) and artery 
wall strains (on the order of 100 kPa; ref. 9), underscoring the 
sensitive nature of these endothelial-specific mechanisms. Flow 
induces dose-dependent secretion of nitric oxide (NO) and pros-
tacyclin, which relax smooth muscle and decrease vascular tone, 
a homeostatic mechanism that maintains a constant FSS (10, 
11). Flow also induces dose-dependent expression of the tran-
scription factor Krüppel-like factor 2 (KLF2), which induces the 
expression of multiple antiinflammatory, antithrombotic, and 
antioxidative mediators to stabilize the vessel wall in adults (12). 
While FSS within the physiological range stabilizes blood vessels 
(12, 13), prolonged low or high flow leads to inward or outward 
remodeling of the vessel wall, respectively (14–17). Regions of 
arteries with bifurcations, curvatures, or valves have weak flow 
with complex changes in direction (collectively termed disturbed 
flow), which, as discussed below, makes them susceptible to the 
formation of atherosclerotic lesions. Occlusions from athero-
sclerosis also give rise to very high flow at the narrow region and 
low flow downstream, which affect lesion progression.

Elucidation of FSS pathways is ongoing. In vitro studies have 
catalogued a wide range of shear-responsive kinases, GTPases, 
ion channels, and other signaling molecules and signaling 
events, as well as many downstream genes and microRNAs 
(reviewed in ref. 13). Recently, epigenetic marks have also been 
observed (18, 19). Of particular relevance for understanding dis-
ease, most studies have primarily focused on differential effects 
of onset of physiological levels of steady laminar flow as a model 
for stable vessels versus oscillatory shear stress as a model for 
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tion in which newly recruited monocytes and macrophages con-
tribute cytokines, metalloproteinases, and extracellular matrix 
(ECM) proteins that are essential for the process (40, 41). A 
recent study showed that ECs exhibit an FSS set point such that 
flow within the physiological range suppresses inflammatory sig-
naling and activates pathways that stabilize the vessel, whereas 
flow below or above the physiological range activates inflamma-
tory pathways and suppresses the stabilization pathways (2). The 
set point model implies that different types of vessels (arteries, 
veins, lymphatics) that have very different flow magnitudes and 
patterns must have different set points. This study also showed 
that differences in expression of VEGFR3, a component of the 
junctional complex that includes PECAM-1 and VE-cadherin (33), 
could explain most of the difference in set point between blood 
ECs and lymphatic ECs, where flow is much lower. Deletion of 
PECAM-1 inhibits both low flow/inward remodeling and high 
flow/outward remodeling (42, 43), supporting a role for the junc-
tional complex in these processes.

While low shear/inward remodeling and high shear/out-
ward remodeling both involve activation of inflammatory path-
ways (2, 44), what determines the direction of remodeling is 
poorly understood, despite its importance for patients with arte-
rial restrictions. High flow has been shown to induce a distinct 
gene expression profile relative to normal flow; this expression 
profile contains both antiinflammatory and remodeling genes 
(45). Outward remodeling in high flow has also been shown to 
require both the NADPH oxidase complex and eNOS (46). The 
identity of pathways that distinguish these two processes to 
determine the direction of remodeling remains a key, clinically 
relevant question.

Atherosclerosis
Atherosclerosis is a chronic inflammatory disease of the arteries 
in which plaques develop in regions where flow is disturbed due 
to vessel geometry (12, 47, 48). Straight segments of arteries with 
unidirectional, high laminar shear are actively protected from 
atherosclerosis due to induction of antiinflammatory, antioxida-
tive, and antithrombotic genes, in large part through induction of 
the flow-dependent transcription factors KLF2 and nuclear fac-
tor (erythroid-derived 2)–like 2 (NRF2) (12). By contrast, regions 
of arteries where time-averaged shear stress is low and subject 
to complex directional changes exhibit low, chronic inflamma-
tion even under control conditions, such as in WT mice that do 
not develop atherosclerosis (49). This “primed” state associated 
with low, disturbed flow is not strongly inflamed but makes the 
endothelium more susceptible to risk factors such as high LDL 
cholesterol and hyperglycemia. These effects have been corrob-
orated in many in vitro studies showing that low or oscillatory 
shear stress fails to induce EC alignment in the direction of flow 
and moderately activates multiple inflammatory events includ-
ing increased permeability, ROS generation, NF-κB activity, and 
expression of receptors and cytokines that recruit leukocytes. 
Perhaps more importantly, this preexisting state sensitizes ECs 
to the action of other inflammatory mediators (12). These results 
are consistent with studies showing that disease risk in vivo cor-
relates with regions of low flow magnitude and with various met-
rics of flow disturbance (50–52).

atherosclerosis. Physiological laminar shear promotes cell 
elongation and orientation in the direction of flow, suppresses 
proliferation, stimulates antiinflammatory gene expression, 
and suppresses expression of inflammatory pathways (20–22). 
Some evidence indicates that cells are sensitive to features of 
pulsatile flow (23, 24), though more systematic studies of these 
effects are needed. By contrast, oscillatory shear stress acti-
vates inflammatory pathways and suppresses expression of the 
antiinflammatory, atheroprotective transcription factor KLF2 
(reviewed in refs. 12, 25).

Upstream of these events, many mechanotransducers have 
been proposed, including PECAM-1, the apical glycocalyx, ion 
channels, G proteins, protein kinases, and primary cilia (26–29). 
However, a coherent model of flow sensing is lacking. The best-
studied mechanotransducer is a complex of endothelial-specific 
proteins localized at cell-cell junctions, consisting of PECAM-1, 
VE-cadherin, and two VEGF receptors, VEGFR2 and VEGFR3 
(30–35). Recent work showed that flow increases tension on 
PECAM-1 via an upstream pathway that triggers association of 
PECAM-1 with the vimentin cytoskeleton, thereby transmitting 
force from myosin to PECAM-1 (32). Tension on PECAM-1 trig-
gers activation of a Src family kinase, resulting in ligand-inde-
pendent transactivation of VEGF receptors and subsequent 
activation of PI3K, endothelial NOS (eNOS), and production 
of NO to induce vasodilation (31, 36). PI3K also activates inte-
grins, which mediate another important subset of flow-depen-
dent pathways involved in cell alignment in laminar flow and 
activation of inflammatory pathways in disturbed flow (31). 
VE-cadherin’s role in this pathway appeared to be as an adapter 
rather than force transducer (31, 32). Mapping studies showed 
that VE-cadherin associated with VEGF receptors through their 
respective transmembrane domains, which was required for 
VEGFR transactivation and downstream signaling (33). The 
mechanosensor upstream of PECAM-1 has not been identified; 
however, Gαq/11 proteins were reported to co-immunoprecipitate 
with PECAM-1, and this interaction was diminished after onset 
of flow (37). Recent data showed that flow triggers secretion of 
ATP from the cells, inducing autocrine or paracrine activation 
of its Gαq/11-coupled purine receptor, P2Y2 (27). Deletion or inhi-
bition of either P2Y2 or Gαq/11 inhibited flow-induced calcium 
transients and phosphorylation of PECAM-1, VEGFR2, and 
eNOS in vitro. Additionally, acute deletion of these genes ele-
vated blood pressure in vivo, consistent with a reduction in NO 
production. Thus, P2Y2 and Gαq/11 are excellent candidates for 
upstream mediators of PECAM-1 cytoskeletal association and 
mechanotransduction.

Physiological remodeling
It has long been proposed that vessels undergo long-term remod-
eling that maintains FSS within a narrow range, often termed a 
set point (38). For example, surgical manipulations, changes in 
tissue demand, or arterial blockages that increase or decrease 
flow through a vessel result in outward or inward remodeling that 
return FSS closer to the original set point values (39). These long-
term changes are partly due to a process called entrenchment, 
where vasoconstriction or dilation are entrenched through matrix 
remodeling. However, tissue remodeling also involves inflamma-
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markers such as ICAM-1 or VCAM-1 (66). Mechanistic in vitro 
studies have shown that fibronectin controls activation of mul-
tiple inflammatory mediators in response to disturbed flow (66, 
67) as well as oxidized LDL, another important inflammatory 
mediator in atherosclerosis (68). Furthermore, fibronectin sup-
presses activation of eNOS and production of NO in response 
to flow (69), thereby inducing endothelial dysfunction. The 
importance of fibronectin in atherosclerosis is supported by ani-
mal studies demonstrating that genetic manipulations to reduce 
fibronectin in the vessel wall reduce plaque burden (70–72). 
Interestingly, diabetes, which is a potent risk factor for athero-
sclerosis, further increases fibronectin deposition in atheroscle-
rosis-prone regions of arteries (73).

Atherosclerosis may thus be seen as a form of flow-depen-
dent remodeling that never resolves. This idea could be tested by 
examining genetically modified mice with specific defects in flow 
sensing in both flow-dependent remodeling and atherosclerosis. 
As noted above, work on Pecam1–/– mice supports this connection; 
however, PECAM-1 is expressed in hematopoietic cells and has 
multiple functions in all cells, which complicates the interpreta-
tion of these data. Identification of genes in humans and mice that 
control growth of collateral circulation after arterial blockage will 
allow comparison to the genes that control atherosclerosis and will 
provide a further, unbiased test of this hypothesis.

Plaque progression and remodeling
Once plaques are formed, mechanical factors contribute to their 
continued remodeling. Intrusion of the plaque into the ves-
sel lumen creates a region of low/disturbed flow downstream, 
which may account for the tendency of plaques to progress in a 
downstream direction (74, 75). Installation of a cuff on carotid 
arteries in hypercholesterolemic mice creates an upstream 
region of low, unidirectional flow and a downstream region of 
oscillatory flow (76). Plaques formed in the upstream segments 
showed increased levels of markers of vulnerability, whereas 
the downstream region appeared more stable; however, the 
pressure drop across the restriction complicates the interpre-
tation of these results. Thus, it is unknown to what extent high 
blood pressure contributes to the vulnerable phenotype in the 
upstream low-flow region compared to the downstream, oscilla-
tory, low-pressure regions. In other models, both low shear and 
transverse shear were strongly correlated with regions of vulner-
ability within plaques (77–79). Plaque rupture itself also depends 
on wall strain. In particular, regions of low shear stress but high 
strain appear to be at greatest risk, presumably because of the 
combination of vulnerable plaque and high strain (80). Micro-
calcification within a thin fibrous cap can also increase the risk of 
rupture, probably because of compliance mismatch, which gen-
erates regions of especially high strain (81).

Atherosclerotic lesions can restrict the artery lumen, but ves-
sels respond by outward remodeling to maintain lumen diameter 
(82, 83). This process, often called the Glagov phenomenon, is a 
specific example of the FSS set point theory: blood vessels remodel 
to maintain a constant FSS (2, 38). However, this beneficial remod-
eling fails as lesions enlarge, usually at around 40% stenosis, after 
which plaque enlargement obstructs the vessel. One explanation 
for the failure to maintain lumen diameter is that fibrous connec-

Susceptibility to atherosclerosis also correlates with failure 
of the ECs to align in the flow direction (53). This finding has 
generally been attributed to low and/or oscillatory shear (49). 
Recently, however, it has been suggested that transverse flow 
(i.e., flow at 90° to the vessel axis) shows the best correlation 
with plaque formation over a range of conditions in animal mod-
els (52). This in vivo result fits well with an in vitro study showing 
that flow perpendicular to the morphological and cytoskeletal 
axis of ECs activated inflammatory pathways, whereas flow that 
was parallel was antiinflammatory, even if it reversed direction 
(54). The inflammatory effect of low or oscillatory flow can be 
rationalized by the fact that cells fail to align in these conditions; 
thus, even unidirectional flow will have a transverse component 
for a fraction of the cell population. This idea also fits well with 
the observation that onset of unidirectional laminar shear ini-
tially activates the inflammatory pathways, but these pathways 
are downregulated at later times as cells align and the antiin-
flammatory pathways become dominant (55). The mechanistic 
basis for these effects is unknown, but a tantalizing clue comes 
from the finding that production of ROS by the NADPH oxidase 
complex in response to flow requires association of VE-cadherin 
with the oxidase complex through the polarity protein PAR3 (56). 
A link between alignment and atherosclerosis in vivo is sup-
ported by studies on syndecan4–/– mice, in which ECs fail to align 
in flow; on a hypercholesterolemic background, these mice show 
increased atherosclerosis, including lesions in regions of laminar 
flow that are normally protected (57).

Disturbed flow patterns induce inflammatory activation of the 
endothelium through a remarkably broad array of pathways and 
genes; see refs. 12, 49, for excellent reviews on this subject. More 
recent work implicates multiple microRNAs in this process (58, 
59). A fascinating connection between flow patterns, microRNAs,  
and lipid metabolism comes from studies of the cholesterol- 
regulated transcription factor sterol regulatory element–binding 
protein 2 (SREBP2). Disturbed flow activates SREBP2 (without 
changes in cellular cholesterol content), which mediates activa-
tion of the NRLP3 inflammasome (60). Activation of this pathway 
results in IL-1β production, an important contributor to athero-
sclerosis that is currently targeted in clinical trials (61). Effects of 
SREBP2 require expression of miR-92a, which targets a number of 
atheroprotective mediators (62). Despite the diversity of inflam-
matory events triggered by disturbed flow, it should be kept in 
mind that the effects are not one-sided. Disturbed flow also acti-
vates important negative regulators that suppress inflammation 
(53). These findings are hardly surprising in light of the benign 
nature of disturbed flow in the absence of other risk factors. Even 
with the presence of risk factors, disease generally takes many 
decades to manifest clinically.

An interesting connection between atherosclerosis and 
physiological flow-dependent remodeling can be observed at the 
level of ECM remodeling. Normal endothelial basement mem-
branes are composed mainly of collagen IV, laminin, and other 
glycoproteins and proteoglycans. Both flow-dependent remodel-
ing and sprouting angiogenesis require proteolysis of this ECM 
and assembly of a fibronectin matrix (63–65). Fibronectin also 
accumulates beneath the endothelium in atheroprone regions 
of arteries in normal adult mice, colocalized with inflammatory 
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Vascular malformations
Vascular malformations are structurally anomalous vessels that 
cause leakage, hemorrhage, and loss of capillary function (107–
109). One clinically important form is cerebral cavernous malfor-
mations (CCMs), which are low-flow vascular malformations (as 
opposed to arterial-venous malformations, which usually have 
high flow) that affect up to 1 in 200 people, causing neurological 
deficits in younger individuals and stroke in midlife. CCM is fre-
quently an autosomal dominant inherited disease due to heterozy-
gous mutations in one of three genes: CCM1 (KRIT1), CCM2, and 
CCM3 (PDCD10) (108, 110). Patients acquire sporadic lesions with 
age, presumably due to additional mutations or other local stresses, 
though these additional events are not well characterized. The 
CCM proteins are expressed in ECs, where they localize mainly at 
cell-cell junctions, anchored to the membrane in part through the 
transmembrane receptor heart-of-glass. Mouse genetic studies 
have shown that all three CCM proteins are required for embryonic 
and postnatal cardiovascular development (111). Clinical features 
of the disease and the biochemistry of the proteins and their inter-
actions have been reviewed previously (112).

Dilated vessels with low flow will have even lower shear stress 
due to the inverse dependence of FSS on vessel diameter, raising the 
question of how the normal homeostatic control of vessel diameter is 
circumvented in CCM. Indeed, recent studies have connected CCM 
proteins to flow signaling. First, deletion of CCM1 in ECs results in 
dramatic upregulation of the transcription factors KLF2 and -4 (113), 
which are normally induced by flow (12). CCM mutation or deletion 
results in similar upregulation of KLF2 in mice, zebrafish, and cul-
tured human ECs, and similar developmental heart defects in mice 
and zebrafish. In zebrafish, reduction of Klf2 partially rescued devel-
opmental defects. Klf2 upregulation was due to increased Mekk3 
kinase activity, which is upstream of Erk5, the kinase that mediates 
flow induction of Klf2. Intriguingly, Mekk3 associates with the CCM 
complex, and its deletion also rescued the developmental defects. 
Together, these data suggest the hypothesis that FSS might work 
by relieving the inhibitory effect of the CCM complex on Mekk3 to 
activate Erk5 and downstream events (113). This idea is at present 
speculative but attractive in light of the role of cell-cell junctions in 
shear mechanotransduction. It should be appreciated that these 
conclusions are based partly on studies (114) of heart development 
induced by complete deletion at early stages, which is distinct in 
many respects from the adult-onset vascular malformations asso-
ciated with heterozygous mutations. However, these systems may 
differ primarily in the events downstream of Erk5 and Klf2, which 
promote angiogenesis in development but promote vessel stability in 
adults (114). It is also likely that other unique features of brain vascu-
lature are critical; secretion of BMP6 in CCMs appears to be one such 
event (115). While the biology of lesions clearly is complex, under-
standing the molecular connections between flow, CCM proteins, 
and the Klf2 pathway will be an interesting area for investigation.

A second potential connection involves the direct binding 
of CCM1 to integrin cytoplasmic domain–associated protein–1 
(ICAP1), a protein that inhibits the conformational activation of 
β1 integrins and increases their binding affinity for ligands (116). 
This interaction stabilizes ICAP1 so that loss of the CCM complex 
results in decreased ICAP1 levels and increased integrin activity. 
Flow also activates integrins, which mediate an important subset 

tive tissue of the adventitia could serve as a physical barrier to fur-
ther expansion and stiffening of the adventitia under loading (84) 
or local inflammation, and thickening of the adventitia in athero-
sclerosis (85) could contribute to this effect. An alternative expla-
nation is that the endothelium undergoes changes that inhibit 
flow sensing and/or remodeling. The recent observation that 
ECs undergo an endothelial-mesenchymal transition (EndMT) 
in response to proatherogenic flow and inflammatory cytokines 
present in atherosclerotic lesions might also explain this phenom-
enon (86, 87). EndMT results in reduced expression of endotheli-
al-specific molecules including VE-cadherin and PECAM-1, which 
mediate flow sensing and could prevent flow-dependent remodel-
ing. This hypothesis is corroborated by the observation that vein 
graft stenosis following exposure to the arterial environment, with 
consequent failed venous graft adaptation and remodeling, is 
characterized by SMAD2/3-dependent EndMT (88).

Outward remodeling has been linked to plaque vulnerability 
(89, 90), perhaps through increased expression of metallopro-
teinases that mediate remodeling but also degrade collagen in the 
fibrous cap. However, a recent large-cohort study addressing the 
role of lesion remodeling in major adverse cardiac events found 
that lesions with multiple necrotic cores and thin fibrous caps 
were more prevalent in the context of inward remodeling (91). 
This study also highlighted the common occurrence (approxi-
mately 95% of patients) of both negative and positive remodeling 
of lesions within the same patient, emphasizing the role of local 
factors in determining lesion remodeling.

Collateral growth and flow-dependent 
remodeling
Upon artery occlusion, blood flow is redirected into smaller collat-
eral vessels upstream of the lesion site, which induces enlargement 
of these small vessels, to improve perfusion of the surrounding tis-
sue (92). Increased collateral flow is also promoted by the arteri-
alization of preexisting capillaries (93, 94). Collateral circulation, 
characterized clinically as the collateral flow index, is a major 
determinant of favorable outcome after myocardial infarction. 
This form of flow-dependent remodeling is mediated by activa-
tion of NF-κB (2), induction of ICAM-1 (95), and local recruitment 
of monocytes/macrophages that secrete VEGF and other factors 
that promote arterialization of capillaries (96, 97). Interestingly, 
two noninvasive therapeutic approaches to increase FSS in the 
coronary vascular network are being tested to promote collateral 
flow: physical reeducation (under trial, ref. 98) and external coun-
terpulsation with pneumatic cuffs (99, 100).

Why some patients do not develop proper collateral vascu-
larization after myocardial infarction remains a major clinical 
question. In mice, different strains exhibit striking variation in 
the extent of remodeling and recovery following femoral artery 
ligation (101). Genetic mapping comparing the two strains at the 
extremes of the distribution for collateral arteriogenesis restrained 
the possible differences to a few genetic loci, though no candidate 
gene that explains the differences has been identified (102). Hyper-
cholesterolemia (103, 104), obesity (105), and aging (106) also 
compromise arteriogenesis in mouse models. Thus, poor flow-de-
pendent remodeling in human arterial disease is likely to have mul-
tiple causes, potentially requiring personalized treatment.
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investigation into blood flow patterns in lesions and the effect of 
CCM mutations and pathways on flow sensing are warranted.

Conclusions
Vascular development and remodeling are morphogenetic pro-
cesses that depend on many genes but are guided by mechanical 
forces from blood flow. This feature very likely reflects the need 
to optimize vessel morphology to carry blood with maximum effi-
ciency. Sensing of FSS by ECs is a key element of these processes. 
Our understanding of FSS signaling, though largely incomplete, 
has reached a stage in which connections to disease are coming 
into focus. We proposed that atherosclerosis and vascular mal-
formations are, in essence, diseases of morphogenesis. That is, 
normal morphogenetic programs have gone awry, resulting in the 
generation of vessels with abnormal characteristics (summarized 
in Figure 1). Atherosclerosis may be seen as a form of futile vascular 
remodeling that occurs in an inflammatory environment at regions 
of disturbed shear. CCMs may be seen as the result of genetic 
mutations that disrupt normal homeostasis, of which flow sensing 
is a key component. Future research is likely to benefit from walk-
ing this two-way street, in which genes and processes involved in 

of flow-dependent pathways (117). Indeed, more recent data show 
that loss of the CCM complex induces flow-independent integrin 
activation (118) and that integrins are required for KLF2 induction 
(119). These data are again consistent with the general idea that 
loss of CCM proteins results in constitutive activation of a pathway 
that is normally regulated by flow. In this regard, it is also interest-
ing that CCMs have now been linked to EndMT (115). This transi-
tion required upregulation of BMP6, which occurred specifically 
in brain vasculature, perhaps explaining the specificity of CCMs 
for this location. On one hand, disturbed flow can induce EndMT 
(86, 87). Conversely, downregulation of EC-specific proteins such 
as VE-cadherin and PECAM-1, which participate in flow signal-
ing, would be expected to reduce flow responsiveness. There are 
a number of different ways in which these observations might be 
related. Either low flow or low sensitivity to flow in malformations 
might sensitize the endothelium to the action of BMP6 or other-
wise contribute to EndMT. EndMT might also contribute to loss of 
flow sensitivity. In either case, the critical role of flow in regulation 
of vascular morphogenesis, including both vessel diameter and 
stabilization, suggests multiple mechanisms by which flow inde-
pendence could contribute to vascular malformations. Further 

Figure 1. Fluid shear stress sensing in physiological and pathological vascular remodeling. FSS acts on mechanosensors including the junctional mecha-
nosensory complex consisting of PECAM-1, VEGFRs, and VE-cadherin (VE-Cad), with the latter also linked to the CCM complex (CCM1, CCM2, and CCM3). 
Left: Changes in flow due to growth or exercise that result in sustained deviation from the set point result in changes in the activation state of flow- 
dependent pathways, which mediate physiological remodeling to restore normal shear stress levels. Center: Mutations in CCM genes results in abnormal 
flow sensing and pathological remodeling, with subsequent formation of abnormal, low-flow vessels. Right: Regions of disturbed flow, in the presence of 
systemic risk factors, result in pathological remodeling to form atherosclerotic plaque. β-cat, β-catenin; HEG, heart-of-glass.
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disease may shed light on basic cellular mechanisms, and under-
standing basic mechanisms may lead the way to understanding 
pathogenesis and ultimately developing new treatments.
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